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Abstract—With the advent of smart grids, accurate electric
load forecasting has become more essential since it may assist
power companies in improving load scheduling and reducing
surplus energy output. Short term load forecasting (STLF) is
gaining popularity owing to its utility in energy usage, demand-
side management, energy storage, peak load forecasting and
minimize electricity production costs. This study offers four arti-
ficial intelligence-based models to enhance 168-hours prediction
accuracy. These models are long short term memory (LSTM),
bidirectional LSTM (Bi-LSTM), Conv2D LSTM and Fbprophet.
The models are trained with hourly energy consumption data
of four years. After training and testing, it is depicted that
bidirectional LSTM can predict more precisely than other models
with an MAPE of 3.59. The MAPE of Conv2D LSTM, LSTM
and Fbprophet are found 3.95, 4.91 and 7.75 accordingly. Since
bidirectional LSTM utilizes the LSTM regular model twice, they
usually have more accuracy than conventional LSTM. The use of
bidirectional LSTM may thus make the demand response system
more efficient.

Index Terms—Long Short-Term Memory (LSTM), Fbprophet,
Bi-LSTM, Conv2D LSTM, MAPE, RMSE, Time series analysis,
Recurrent Neural Network (RNN), Neural Network (NN), Short
term load forecasting (STLF).

I. INTRODUCTION

The global electricity consumption has risen dramatically
in the past few decades due to extensive industrial progress
around the world [1]. In recent times, many new technologies
such as distributed renewable generation, demand side man-
agement, peak load shifting are integrated into the distribution
grid. Therefore, accurate forecasting of future demand has
played a significant role in terms of surveillance of the power
system’s stability and smart energy management [2]. Actual
demand prediction is indispensable for integrating demand
response, utility energy conservation, energy efficiency, load
scheduling and overall smooth operation of power grids [3].
According to the energy agencies, even a minor improvement
in electricity load forecasting could lower the production costs
and boost trade benefits especially when energy usage is at its
highest [4].

Load forecasting can be classified into three categories
such as short term forecasting (1 hour to 1 week), midterm
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forecasting (1 week to 1 year) and long term forecasting (from
1 year and above). Previously, statistical methods are mainly
used load foretasting but recently different machine learning
algorithms are tested to determine the accurate future demand.
[5]. In this paper, our aim is to focus on short-term load fore-
casting (STLF) which is necessary for power system control
and scheduling, interchange evaluation, security assessment,
robustness and spot price computation all of which demand
greater precision than long-term forecasting [6].

Short term load forecasting (STLF) is mainly required to
plan power system generation timetable, ensure the safe and
reliable operation of power plants, cost-effectiveness, demand
side management control and dependability [7]. A short-term
(1-2 days) prediction can identify which power sources will
be able to access during the next 24 hours, and transmission
network resources may be allocated promptly to customers,
depending on current transmission needs. Electricity retailers
may use an adequate demand and supply prediction to compute
energy prices more effectively based on anticipated demand
[4]. Short-term load forecasting (STLF) is gaining popularity
in smart grids, microgrids, and buildings due to its utility in
demand-side management, energy consumption and storage,
peak load prediction and risk reduction [8]. In this field,
researchers have proposed a variety of approaches. These
techniques are divided into two groups: (1) Traditional strategy
such as regression, exponential smoothing and Kalman filter
(2) Artificial intelligence-based models such as artificial neural
networks (ANNSs), recurrent neural networks (RNNs), convolu-
tional neural networks (CNNs), fuzzy-based methods, genetic
algorithm, support vector regression (SVR), deep learning
models [9], [10]. Classical methods rely on statistical computa-
tions and presume that the load series is steady. Consequently,
these methods are unable to adequately describe the nonlinear
relationships between load profile and some variables such
as consumption patterns which result in large load forecast-
ing errors. Contrarily, Al-based models are adept at dealing
with complicated and nonlinear data, lead to enhanced load
forecasting accuracy [9]. Due to their resilience and better
performance, deep learning models have been a rising trend
for managing time-series data in recent years. Thus they’ve



quickly become the paradigm for time series analysis [11].
Using traditional linear models, such as SARIMA, ARIMA,
and SARFIMA requires enormous load-data pre-processing
and analysis of Auto Correlation and Partial Auto Correlation
Functions to determine the appropriate set of mode hyper-
parameters for STLF [12]. Despite their simplicity, traditional
techniques like regression and multiple regression are still
frequently employed, particularly for long-term forecasting,
according to a recent study [10]. Unsupervised learning has
also been implemented for forecasting and decision making
which can generate near ideal result given enough parameters
[13]. Though it lacks significant robustness. The Recurrent
Neural Network (RNN) is one kind of ANN that performs
better with sequential data types [14]. LSTM was developed to
overcome the disappearance or explosion of gradients during
the backpropagation phase of RNN [15]. In contrast to RNNss,
LSTMs include a memory cell that contains input, output
and forget gates that allow long term dependency [16]. Bi-
LSTM and Conv2D LSTM are special types of LSTM that
provide more accurate prediction due to their duet model and
convolution operation respectively [17], [18]. Fbprophet is a
relatively new model for STLF which has shown impressive
results for some particular datasets [19]. The findings indicate
that the use of LSTM and Fbprophet resulted in extremely
high accuracy for the three currencies, ranging between 93%
and 99%, whereas the accuracy of the ARIMA model varies
between 82% and 66% [10]. Bi-LSTM and Conv2D LSTM
can perform better than other machine learning based models
such as multiple linear regression (MLR), k-nearest neighbors
regressor (KNN), epsilon-support vector regression (SVR),
random forest regressor (RF) [20].

This paper is arranged into four sections. In Section I, the
relevant literature review has been provided with an outline
of this study. In section II, data description and all the four
models, such as Fbprophet, LSTM, Bi-LSTM and Conv2D
LSTM are discussed briefly. In section III, the performance
of these four models are analyzed and a comparison study is
carried out. Finally, the paper is concluded with section IV.

II. METHODOLOGY
A. Dataset Description

In this paper, hourly electricity load data of Panama pro-
vided by ETESA and CND is used [21]. The time period of
the dataset used in this study ranges from January 2015 to
April 2019. The dataset has been split into two parts. Around
99.55% data was used for training the models whereas, about
0.45% was used for testing purposes.

It is found that there lies a 72-hours gap between the training
and testing data. From the histogram diagram, it is clear that
the national electricity demand of Panama ranges from 750
MWh to 1750 MWh, with 1000 MWh repeated maximum
times of about 1600.

This panama dataset is very recent, thus there has not been
any groundbreaking research done on it yet. The Histogram
diagram in fig.1 indicates that the data is almost normally
distributed and no data point is missing.
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Fig. 1: Histogram of the dataset

Training data has been implemented in our four models and
the performance of the models are evaluated using the test
data. The workflow is shown in fig. 2.
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Fig. 2: Flow diagram of system models



B. Description of models

1) Fbprophet: Fbprophet is a time series-based forecasting
algorithm that was developed by Facebook. The Prophet
prediction model can be broken down into four parts. They are:
trend term, seasonal term, holiday effect and the error term.
The mathematical representation of the model is as follows:
[10]

y(t) = q(t) +7(t) + h(t) + & (D

Here, ¢(t) is the trend function which is used for modelling
the non-periodic changes, r(¢) indicates the seasonality or reg-
ularity of the time series which models the periodic changes,
h(t) represents the holiday effect and finally, £; means the
error term which illustrates any kind of unusual data that does
not fit through the model. By combining this four functions,
Fbprophet can predict the time series with a decent amount of
accuracy.

2) Long Short Term Memory (LSTM): Traditional Recur-
rent Neural Network (RNN) models are very popular for
analysing sequential data. However, they often struggle while
dealing with long term dependencies due to their short term
memory [22]. For solving this issue, a new type of RNN
known as LSTM was introduced in 1997. Unlike RNN models,
LSTMs have an ability to recall important information for an
extended amount of time. An LSTM model is a collection of
cells and in this cells information is captured and saved. Each
individual cell has three gates such as: forget, input and output
gate [23].

Forget gate: The sigmoid function present in the forget
gate chooses whether the existing information will be kept
or removed from the LSTM memory. It generates a number
between O to 1, where O represents totally removing the
information and 1 means preserving it.

Input gate: The input gate determines which new informa-
tion will be stored in the LSTM memory. It has two parts: a
sigmoid layer and a tanh layer. The sigmoid layer determines
which information has to be modified on the other hand, the
tanh function generates a vector of new candidates that can be
included on the memory.

The next step is to update the LSTM memory by forgetting
the old state and then adding the new possible state.

Output gate: This gate decides which part of the LSTM
memory will be the output of the cell. The output is generated
based on the cell state, and with filtered and newly included
data.

In this paper, four dense layers along with one LSTM
cell layer was used for training the entire LSTM model. The
summary of this model is shown in fig. 3.

3) Bidirectional LSTM (Bi-LSTM): Bidirectional LSTMs
are an extended version of the traditional LSTM models.
Unlike regular LSTMs, Bi-LSTMs have two training models.
One model is used to train the input sequence in the forward
direction and the other model is trained to learn the sequence
in the backward direction. As Bidirectional LSTMs use the
regular LSTM model twice (forward and reverse), their accu-
racy is normally higher than the conventional LSTMs [17].
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Fig. 3: Summary of LSTM model

In this paper, only one dense layer was used for training
the Bi-LSTM model. Fig. 4 illustrates the model summary of
Bi-LSTM.
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Fig. 4: Summary of Bi-LSTM model

4) Conv2D LSTM: Conv2D LSTM is another special type
of LSTM that performs the convolutional operation in the
LSTM cell. Traditional LSTMs are modelled in such a way
that they can learn long term dependencies easily. However,
because of this, a regular LSTM is unable to model spatial
information well. The convolutional LSTM overcomes this
issue by replacing matrix multiplication with a convolutional
operation [18].

Model summary of Conv2D LSTM utilized in this research
is represented in fig. 5.

Summary of hyper-parameters for LSTM, Bi-LSTM and
Conv2D LSTM are shown in TABLE L
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TABLE I: Hyperparameters of LSTM, Bi-LSTM and Conv2D
LSTM

Epoch 200
Batch size 125
Optimizer ADAM
Loss Mean squared error
Early stopping Patience = 30
Random seed 25

III. RESULTS AND DISCUSSION

Bi-LSTM, LSTM, Conv2D LSTM and Fbprophet models
are applied in our dataset. The actual and predicted results are
presented below for all the four models stated above.

Fig. 6 shows that Bi-LSTM can predict considerably more
precisely than other models. This occurs owing to the dual
model characteristic of the Bi-LSTM, where one model trains
the input sequence in forward direction while the other trains
backwards. According to the predicting abilities, Conv2D
LSTM and LSTM occupy second and third place respectively.
It is also evident that Fbprophet has predicted well initially.
But in the end, it deviates from the actual values due to the
lack of smoothness in test data. Otherwise, it would have been
brilliantly done. Prediction performance can be analyzed more
effectively by Mean Absolute Percentage Error (MAPE) and
Root Mean Square Error (RMSE).

Z |1‘1 Yil )

MAPE(%) =

ZZVI( yl)
N

RMSE = 3)

where the actual and forecasted load values are represented
by xz; and y; respectively and N indicates total number of
observations.

TABLE II: Error rate comparison of different models

Model Name MAPE | RMSE
Bi-LSTM 3.59 49.40
Conv2D LSTM 3.95 54.35
LSTM 491 74.14
Fbprophet 7.75 134.17
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Fig. 6: Visualizing the performance of different models

We can get a brief idea on performances of all the four
models from TABLE II.

The least MAPE is found 3.59 for Bi-LSTM as expected
from fig. 6. In this study, our major contributions are: (i) this
particular dataset from Panama is implemented in LSTM, Bi-
LSTM, Conv2D LSTM and Fbprophet for the first time and
found better results than other machine learing models. (ii)
The MAPE of 3.59 for Bi-LSTM is the lowest value so far
for this particular dataset. The previous least MAPE was found
3.66 by applying the Extreme Gradient Boosting Regressor
(XGBoost) model [20]. (iii) In addition, Conv2D LSTM and
Fbprophet are relatively new models for STLF that are used
in this research.

IV. CONCLUSION

The current progress in electricity networks requires ac-
curate techniques for predicting demand to maintain their
stability and to prevent different energy catastrophes. In this
research, three neural network-based models such as LSTM,



Bi-LSTM, Conv2D LSTM and a machine learning model
Fbprophet are implemented for 168 h load forecasting of
Panama. After training and testing, it is observed that neural
network-based models are more suitable for this kind of com-
plex, non-stationary, non-uniform dataset. Bi-LSTM performs
superior among the three neural network based models for this
dataset. Fbprophet might do better if the dataset was smoother.
The effectiveness of these models might be improved by
using additional historical data. Other models based on neural
networks are highly recommended to improve this result.
The use of LSTMs with additional hyper-tuned parameters
and optimizations may be a useful technique for anticipating
power demand and provide superior results. Predictions may
be improved by including a variety of input characteristics,
such as weather data. Al-based hybrid models may offer a
new horizon in order to improve the performance of short
term load forecasting (STLF).
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